
Introduction

Intraoperative neuromonitoring (IONM) has seen 

substantial evolution over the past century, becoming 

a cornerstone of modern surgery. Its primary aim is to 

monitor neural structures' functional integrity during 

operations, thereby preventing neurological deficits. 

This technology is especially beneficial in surgeries in-

volving the spine, brain, and peripheral nerves. The 

origins of neuromonitoring date back to the late 19th 

century with the initial use of electrical stimulation for 

neural mapping [1,2]. Significant advancements came 

in the mid-20th century with the development of elec-

tromyography (EMG) and evoked potentials (EPs), 

which formed the basis of modern neuromonitoring. 

EMG captures muscle electrical activity, while EPs 

measure the brain's response to sensory stimuli. 

Intermittent intraoperative neuromonitoring (I-IONM) 

emerged from these technologies, involving periodic 

nerve function assessments at specific surgery intervals 

[3-5]. 

IONM has revolutionized laryngeal surgeries, en-

hancing safety and outcomes by protecting critical neu-

ral structures, specifically the recurrent laryngeal nerve 

(RLN) and the vagus nerve [1,2,6,7]. These nerves are 

essential for voice, swallowing, and breathing func-

tions, making their preservation during procedures like 

thyroidectomy, parathyroidectomy, and laryngectomy 

crucial. The RLN, innervating the vocal cords, is espe-

cially vulnerable due to its anatomical path. Injury to 
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this nerve can cause vocal cord paralysis, leading to 

hoarseness, voice loss, and severe airway complications. 

Real-time monitoring of neural function via IONM is 

vital to avoid such adverse outcomes [1,7].

Despite its usefulness, I-IONM had the drawback of 

providing only momentary neural activity snapshots, 

potentially missing transient changes indicating nerve 

injury [8-10]. The shift from intermittent to continuous 

intraoperative neuromonitoring (cIONM) was transformative. 

cIONM provides real-time, ongoing nerve function as-

sessments throughout surgery, allowing immediate de-

tection and correction of any nerve activity changes to 

prevent permanent damage. Key advancements driving 

cIONM's development and adoption include refined 

EMG techniques, which offer constant muscle activity 

data, and the introduction of sophisticated monitoring 

equipment and software that enhance cIONM's sensi-

tivity and accuracy [11-14]. 

 

Technical Aspects and Success of 

cIONM in Laryngeal Surgery

cIONM has become an essential tool in modern sur-

gical practices, especially in procedures where the pro-

tection of neural structures is critical. The primary aim 

of cIONM is to provide real-time, continuous feedback 

on the functional integrity of nerves during surgery, 

thereby minimizing the risk of nerve damage and im-

proving patient outcomes [8-10]. At its core, cIONM 

involves the continuous recording of EMG signals 

from muscles that are innervated by the nerves at risk. 

This real-time monitoring allows for the immediate de-

tection of any changes in nerve activity, which can in-

dicate potential nerve damage. The continuous nature 

of this monitoring provides a constant stream of data, 

enabling the surgical team to take prompt corrective 

actions if any abnormalities are detected [13,14]. This 

is particularly useful in surgeries involving the RLN 

and the vagus nerve, which are critical for functions 

such as speech and swallowing. Although continuous 

IONM may incur higher costs, its advantages in mini-

mizing surgical complications significantly outweigh 

the financial implications. By providing real-time mon-

itoring of nerve function, continuous IONM empowers 

surgeons to make informed decisions and take immedi-

ate corrective actions, ultimately leading to improved 

patient outcomes and reduced postoperative morbidity 

[15-17].

While there are studies demonstrating the superiority 

of continuous IONM over intermittent IONM in pre-

venting vocal cord palsy, specific success rates can 

vary depending on factors like surgical complexity, sur-

geon experience, and patient-specific conditions. 

Schneider et al. found that continuous IONM reduced 

the early postoperative vocal cord palsy rate by 

1.7-fold and the permanent vocal cord palsy rate by 

30-fold compared to I-IONM [17]. This suggests a sig-

nificant improvement in outcomes with continuous 

monitoring. However, it's essential to note that the ab-

solute risk of vocal cord palsy is relatively low, even 

with intermittent monitoring. Therefore, the clinical im-

pact of choosing one technique over the other may not 

be substantial in all cases. Ultimately, the decision to 

use continuous or intermittent IONM should be made 

on a case-by-case basis, considering the specific cir-

cumstances of each patient and the surgeon's expertise 

[15,16].

Laryngeal Adductor Reflex cIONM

One innovative technique within cIONM is the uti-

lization of the laryngeal adductor reflex (LAR). LAR- 

cIONM involves continuously stimulating and record-

ing reflexive responses from the laryngeal muscles. 
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Surface electrodes placed on the endotracheal tube 

stimulate the RLN and record the resulting muscle con-

tractions, providing a non-invasive method to monitor 

nerve function in real-time [11,12,18]. This technique 

is highly sensitive, detecting even subtle changes in 

nerve activity, enabling early intervention and reducing 

the risk of permanent nerve damage. LAR-cIONM lev-

erages the body's natural protective reflex to monitor 

the integrity of the RLN during laryngeal surgery. By 

stimulating the laryngeal mucosa, the LAR is triggered, 

leading to vocal cord contraction. EMG is used to 

monitor these muscle contractions and detect any 

changes in nerve function [11,12,19]. Any disruption 

to the RLN during surgery can be immediately identi-

fied, allowing for corrective action and potentially pre-

venting permanent nerve damage. LAR-cIONM has 

demonstrated significant success in reducing the in-

cidence of postoperative vocal cord paralysis compared 

to traditional monitoring techniques [11,12,14].

Vagal Nerve Stimulation in cIONM

Vagal nerve stimulation is another critical component 

of cIONM, especially in surgeries involving the RLN. 

The vagus nerve is stimulated continuously to elicit re-

sponses from the laryngeal muscles [13,20]. This tech-

nique helps in identifying the exact location and func-

tional integrity of the RLN during surgery. Continuous 

stimulation of the vagus nerve provides real-time feed-

back on nerve function, enabling the surgical team to 

detect and respond to any changes promptly. Vagal 

nerve stimulation in cIONM is particularly useful in 

thyroid and parathyroid surgeries, where the risk of 

RLN injury is high [20-22]. By continuously monitor-

ing the nerve function, surgeons can make immediate 

adjustments to their surgical approach to prevent nerve 

damage. This technique has been shown to reduce the 

incidence of postoperative vocal cord paralysis and 

other nerve-related complications [21,23].

Application of Endotracheal Tube- 

Based Monitoring Systems

The integration of endotracheal tube-based monitor-

ing systems and cIONM has significantly advanced the 

precision and protection of laryngeal surgeries. These 

systems are designed to provide real-time, continuous 

feedback on nerve function, enhancing the safety and 

efficacy of surgical procedures [11,12,14]. Endotracheal 

tube-based monitoring systems are specifically de-

signed to facilitate continuous monitoring of the RLN 

and other critical neural structures during laryngeal 

surgeries. By incorporating surface electrodes into the 

endotracheal tube (ETT), these systems provide a sta-

ble and consistent means of recording EMG signals 

from the laryngeal muscles throughout the surgery 

[24-27]. This continuous monitoring allows for imme-

diate detection of any changes in nerve activity, en-

abling prompt corrective actions to prevent nerve 

damage. Both ETT-based monitoring systems and 

cIONM provide real-time feedback on nerve function 

[2,28,29]. This continuous stream of data allows the 

surgical team to detect any changes in nerve activity 

immediately, enabling them to take prompt corrective 

actions to prevent nerve damage. This is particularly 

crucial in delicate surgeries involving the larynx, where 

nerve injury can have significant consequences. ETT- 

based systems offer a less invasive alternative to tradi-

tional needle electrodes, reducing the risk of infection 

and patient discomfort [2,25-29]. The surface electro-

des on the ETT maintain consistent contact with the 

laryngeal muscles, ensuring reliable data collection and 

minimizing the likelihood of signal loss or artifacts. 

This consistency is vital for effective continuous 
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monitoring. The combination of ETT-based systems 

and cIONM enhances the precision of neuromonitoring 

during laryngeal surgeries [2,29-31]. This increased 

precision helps in minimizing the risk of postoperative 

complications such as vocal cord paralysis. By provid-

ing continuous, real-time monitoring and reliable feed-

back on nerve function, the integration of ETT-based 

systems and cIONM improves overall surgical outcomes 

[24,25,28,30]. Surgeons can make informed decisions 

during the procedure, reducing the risk of nerve dam-

age and ensuring better protection of critical neural 

structures. This results in improved patient safety and 

postoperative recovery. Endotracheal tube-based mon-

itoring systems have revolutionized IONM, particularly 

in surgeries involving the laryngeal nerves. These sys-

tems integrate surface electrodes onto the ETT, which 

is used to secure the patient's airway during surgery 

[29-31]. The electrodes continuously stimulate the 

nerves and record the resulting muscle activity, allow-

ing real-time monitoring of the RLN and other critical 

neural structures, providing immediate feedback to the 

surgical team. Lastly ETT-based systems are easier to 

set up and use compared to needle electrodes. The in-

tegration of electrodes into the ETT streamlines the 

monitoring process, reducing the complexity and time 

required for electrode placement. This efficiency is par-

ticularly beneficial in high-stakes surgeries where time 

is critical. ETT-based monitoring systems are compat-

ible with modern surgical techniques, including mini-

mally invasive and robotic surgeries. This compatibility 

ensures that neuromonitoring can be seamlessly in-

tegrated into various surgical approaches, further en-

hancing the precision and safety of these procedures 

[24-27]. ETT-based monitoring systems offer sig-

nificant advantages over traditional needle electrodes, 

making them a valuable tool in continuous intra-

operative neuromonitoring. Their minimally invasive 

nature, consistent and reliable data collection, ease of 

use, real-time feedback, and improved patient safety 

make them an essential component of modern laryngeal 

surgeries [2,26,29,30]. These innovations in neuro-

monitoring technology continue to enhance the quality 

and outcomes of surgical care. Figure 1 shows a gen-

eral diagram of how different electrodes are used in 

IONM for laryngeal surgeries.

Figure 1. Diagram of electrode placements in intraoperative neuromonitoring during laryngeal surgeries. EMG, electromyographic.
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Recent Advancements in EMG 
Techniques and Combined EMG 
Events for Neuromonitoring in 
Laryngeal Surgery

EMG plays a pivotal role in cIONM, serving as the 

primary method for recording and assessing the elec-

trical activity of muscles innervated by nerves at risk 

during surgery. The relationship between EMG and 

cIONM is foundational, as EMG provides the real-time 

data necessary for effective continuous monitoring of 

neural function. Recent advancements in EMG technol-

ogy have significantly revolutionized neurophysiology 

and neuromonitoring fields. One notable development 

is the advent of wireless and wearable EMG systems 

[32-35]. These systems offer greater flexibility and 

convenience compared to traditional wired setups, en-

abling continuous monitoring of muscle activity. This in-

novation allows healthcare providers to make more in-

formed decisions about treatment plans and track the 

progression of neuromuscular disorder. Another sig-

nificant advancement is the use of flexible noninvasive 

electrodes for surface EMG acquisition. These electrodes 

are designed to be more comfortable and less intrusive, 

making them ideal for long-term monitoring and remote 

healthcare applications. The improvements in signal 

processing techniques have also enhanced the accuracy 

and reliability of EMG data, thereby improving its clin-

ical utility [36-39].

Combining EMG with other neurophysiological 

techniques, such as electroencephalography (EEG), has 

further advanced the field. This multimodal approach 

provides a more comprehensive assessment of neuro-

muscular function, particularly beneficial in rehabilitative 

applications. For example, combining EMG and EEG 

can help evaluate cortico-muscular interactions, offer-

ing valuable insights into motor control and re-

habilitation outcomes [38,39]. In the realm of surgery, 

the integration of EMG technology into cIONM has led 

to the development of advanced monitoring systems 

that provide quantitative electromyographic data, en-

abling more precise and reliable assessments of nerve 

function. These systems can detect adverse EMG events, 

such as amplitude decreases or latency increases, which 

indicate potential nerve damage [37,39]. By responding 

to these events promptly, surgeons can minimize the 

risk of permanent nerve injury and improve surgical 

outcomes.

Integration of cIONM in Minimally 

Invasive Surgical Techniques

cIONM has become a cornerstone in enhancing the 

precision and safety of robotic and endoscopic lar-

yngeal surgeries [22,40-45]. These minimally invasive 

techniques require meticulous surgical precision due to 

the confined and complex anatomy of the laryngeal re-

gion, where even slight inaccuracies can lead to sig-

nificant complications. cIONM plays a critical role in 

these advanced surgical methods by providing re-

al-time, continuous feedback on the functional integrity 

of the RLN and other critical neural structures 

[41,42,46-50].

In robotic and endoscopic surgeries, the surgeon of-

ten relies on highly specialized instruments and visual 

aids, making it crucial to have ongoing, reliable in-

formation about nerve function [9,48-52]. cIONM en-

sures that any potential nerve irritation or damage is 

detected immediately, allowing the surgical team to 

take prompt corrective actions. The integration of 

cIONM with robotic and endoscopic techniques sig-

nificantly enhances surgical precision. The continuous 

monitoring of nerve function enables surgeons to navi-

gate the intricate anatomy of the larynx with greater 

confidence and accuracy. This real-time feedback 
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mechanism helps in avoiding inadvertent nerve injury, 

which is particularly important in preserving the patient's 

voice, swallowing function, and overall quality of life.

Furthermore, the use of cIONM in these minimally 

invasive procedures has been shown to improve surgi-

cal outcomes. Studies have demonstrated that con-

tinuous monitoring reduces the incidence of post-

operative complications such as vocal cord paralysis 

and other nerve-related dysfunctions [9,40,41,44,49-52]. 

This translates into faster recovery times, reduced post-

operative morbidity, and better overall patient satisfaction. 

cIONM is indispensable in robotic and endoscopic lar-

yngeal surgeries. Its ability to provide continuous, re-

al-time feedback on nerve function enhances surgical 

precision and significantly improves outcomes. This 

advancement not only ensures the safety and efficacy 

of these complex procedures but also elevates the stand-

ard of care in laryngeal surgery, paving the way for more 

successful and minimally invasive treatment options.

Challenges and Future Directions 

and Emerging Technologies for 

cIONM

cIONM has significantly advanced surgical practice, 

particularly in procedures where protecting neural 

structures is crucial. However, despite its numerous 

benefits, cIONM still faces several challenges. Technical 

challenges include artifact reduction, optimal electrode 

placement, and accurate signal interpretation [14,53-55]. 

Clinical challenges encompass standardization of proto-

cols, cost-effectiveness, patient variability, and complex 

surgical scenarios. To further optimize cIONM, future 

advancements may involve artificial intelligence (AI)- 

powered algorithms for improved signal analysis, ad-

vanced electrode technologies for enhanced signal 

quality, and real-time feedback systems integrated with 

surgical navigation. Addressing these challenges is es-

sential to maximize the benefits of cIONM and im-

prove patient outcomes.

The future of cIONM is poised for significant ad-

vancements, driven by emerging technologies and in-

novative approaches. One of the key areas of develop-

ment is the integration of AI and machine learning 

(ML) algorithms into cIONM systems [56-59]. These 

technologies can enhance the accuracy and efficiency 

of monitoring by analyzing vast amounts of data in re-

al-time, identifying patterns, and predicting potential 

complications before they occur [58,59]. 

Another promising technology is wearable neuro-

imaging devices. Devices such as EEG [60-63] and 

functional near-infrared spectroscopy (fNIRS) can con-

tinuously monitor brain activity during surgery. These 

wearable devices offer the advantage of being non-in-

vasive and can provide real-time feedback to surgeons, 

allowing for immediate adjustments during the proce-

dure [64-67]. Remote monitoring is also gaining trac-

tion in the field of cIONM. With the advent of tele-

medicine, it is now possible to monitor patients remotely, 

even after they have been discharged from the hospital. 

This is particularly beneficial for patients who require 

long-term monitoring and follow-up care. By combin-

ing different monitoring techniques, such as EEG, fNIRS, 

and amplitude-integrated electroencephalography, clini-

cians can obtain a more comprehensive view of the pa-

tient's brain function [60-63]. This approach helps iden-

tify subtle changes in brain activity that might be 

missed by a single monitoring method. Improvements 

in cIONM methods are expected to enhance both the 

accuracy and usability of these technologies. One po-

tential improvement is the development of more so-

phisticated algorithms for data analysis. These algo-

rithms can help reduce false positives and negatives, 

thereby improving the reliability of cIONM systems 

(Figure 2).
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Another area of improvement is the miniaturization 

of monitoring devices. Smaller, more portable devices 

can be easily integrated into surgical setups, making it 

easier for surgeons to use them without disrupting the 

workflow [61,62,64,65,67]. Additionally, advancements 

in wireless technology can eliminate the need for cum-

bersome cables, further streamlining the monitoring 

process. In terms of clinical use, there is a growing em-

phasis on personalized medicine. By tailoring cIONM 

protocols to individual patients, clinicians can provide 

more targeted and effective monitoring. This approach 

leads to better outcomes and reduces the risk of 

complications.

Conclusion

In summary, the future of cIONM looks promising 

with the integration of AI and ML, the use of wearable 

neuroimaging devices, the adoption of remote and mul-

timodal monitoring, and improvements in data analysis 

algorithms and device miniaturization. These advance-

ments are set to enhance the precision, reliability, and 

overall effectiveness of neuromonitoring in clinical set-

tings, leading to improved patient care and surgical 

outcomes.
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Figure 2. Future directions of cIONM for laryngeal surgeries showing possibilities for combining with EEG, fNIRS, machine 

learning and artificial intelligence for improving accuracy and advanced monitoring techniques. IONM, intraoperative 

neuromonitoring; cIONM, continuous intraoperative neuromonitoring; EEG, electroencephalogram; fNIRS, functional 

near-infrared spectroscopy; AI, artificial intelligence.
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